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SUMMARY

Successful interface methods for multiphase flows need to be designed to operate well in the opposite
extremes of strongly surface tension-dominant flows on the one hand and strongly deforming flows on
the other. To this end, recent advances in direct numerical simulation of multiphase flows have involved
the hybridization of popular methods. One hybrid approach developed by the authors is the level contour
reconstruction method (LCRM), which combines the characteristics of both the front tracking and the level
set method. It was designed specifically for general 3D multiphase flow problems where very dynamic
and deformable interfaces interact and where accuracy, reliability, and simplicity are essential features.
In this paper, we carry the hybridization of the LCRM with the level set technique to a further level in
that the explicit calculation of a distance function is introduced and plays a crucial role in the interface
reconstruction procedure as well as in the calculation of the surface tension force. An accurate method of
computing the distance function directly from the tracked interface is presented whereby a vector distance
function is found, i.e. the minimum distance to the interface as well as the corresponding minimum
distance point location on the interface itself. This information allows us to calculate a compact curvature
field for the computation of the surface tension force, which decreases the level of parasitic currents to a
negligible level. Various benchmark test cases to demonstrate the accuracy of the new schemes compared
with other existing methods are provided. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Accurate characterization of the interfacial front in multiphase flow simulations has been a crucial
issue for the computational modeling of numerous important engineering applications. Highly
dynamic and deforming interfaces, together with complex interfacial physics from geometric
curvature associated with surface tension as well as phase transformation make it a still more
formidable task to come up with an accurate, reliable, and yet simple method. Successful interface
methods for multiphase flows need to be designed to operate well in the opposite extremes of
strongly surface tension-dominant flows on the one hand and strongly deforming flows on the
other. In strongly surface tension-dominant flows, numerical inaccuracies in the calculation of
interface geometry result in so-called parasitic or spurious currents. In strongly deforming flows,
the difficulty lies in maintaining a high-quality interface while conserving mass and gracefully
allowing arbitrary and repeated topology changes.

Front capturing type methods such as volume-of-fluid (VOF) [1–3], level set [4], and phase
field [5], which represent the interface implicitly are relatively simpler in their formulation than
front-tracking type methods [6–8], which explicitly track the interface. On the other hand, front
capturing methods usually incorporate special types of convection schemes to retain interfacial
sharpness during the simulation, whereas front-tracking schemes are well known to maintain sharp
interface structures and mass conservation as they preserve material characteristics. When fluid
filaments become too thin, VOFmethods tend to form irregular interfaces, which are not smooth and
even discontinuous in the attempt to maintain precise local mass conservation. Level set methods
lose/gain a significant amount of mass, lowering the accuracy and ultimately compromising the
entire solution. Several researchers have worked to improve the accuracy of the geometrical
information in the VOF method [1–3, 9] and numerous attempts have been made to improve mass
conservation in level set methods [4] using a variety of reinitialization techniques and higher order
ENO/WENO convection schemes. On the other hand, front-tracking schemes pose many difficulties
in reconstruction of the interface especially in three dimensions for the essential operations of
addition/deletion, breaking, and merging of the computational interface elements.

Each of the above methods has some advantage over the others and varying degrees of success
in modeling general 2D multiphase problems over wide parameter ranges. On the contrary, it is
still difficult to conduct full direct simulations for 3D multiphase flows, even with current computer
resources. Thus, accuracy under limited memory and computational time is an essential feature in
developing a numerical algorithm. Recently, there have been efforts to construct hybrids among
the above mentioned methodologies with the intention of facilitating simulations of general 3D
problems.

Sussman and Puckett [10] proposed a coupled level set/VOF method, which combines the
accuracy in mass conservation of the VOF method and the facility of handling complex topology
change of the level set method. The resulting scheme still remains Eulerian and alleviates some
of the geometrical connectivity problems associated with the VOF method, but it still has some
problems of accuracy in under-resolved regions by blindly applying the VOF local mass constraint.

Enright et al. [11] added Lagrangian marker particles in Eulerian level set methods to precisely
rebuild the zero distance function near the interface. Combining front-tracking type characteristics
allows the level set method to obtain subgrid scale accuracy near the interface, as in pure front
tracking methods, and better mass conservation properties in under-resolved regions. Thus, the
unsatisfactory description of interfacial geometry in the VOF method can be overcome by using
the level set function, which maintains fine geometric properties. Their ‘particle level set’ method
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compares favorably with VOF and front tracking in mass conservation as well as in interface
resolution. The lack of connectivity between marker particles makes the implementation much
easier than front tracking but to maintain accuracy the interface marker particles, positioned
randomly and passively advected by the flow, have to be distributed as uniformly as possible.
Therefore, a special algorithm is necessary for adding/deleting particles in over or under populated
regions.

Aulisa et al. [12, 13] present a new hybrid method, which combines markers and VOF methods.
Two distinct markers of grid intersection and mass conservation have been used to describe
the interface. Both the markers are advected numerically to update the volume fraction. The
conservation markers inside each cell keep the local volume fraction at the reference value, whereas
the intersection markers, which locate the interface on the grid lines, eliminate the necessity of
remeshing the system. Thus, they obtained both smooth motion of the interface as well as good
mass conservation as in the standard VOF method.

As an alternative hybrid method, we have developed the level contour reconstruction method
(LCRM) [14–17] for general 3D multiphase flows including phase change. The main idea was
focused on simplicity and a robust algorithm especially for the 3D case. It combines the charac-
teristics of both front tracking and level set methods. It is still, however, primarily a front-tracking
method as it uses Lagrangian elements (line segment elements in 2D and triangles in 3D) to
describe the interface and its motion.

During the course of a simulation the interface is periodically regenerated from contour field
values (e.g. indicator function or distance function as in the level set method) to avoid undue
irregularity of interfacial elements, which can become too large or too small as a result of interface
advection. The LCRM can be seen as adopting some ideas from level set techniques, whereas the
particle level set method [11] adopts some ideas from the front-tracking techniques. The LCRM
uses 2D linear or 3D triangular elements for the interface rather than point particles dispersed in
the vicinity of the interface as in the particle level set method. The LCRM is basically a front-
tracking type method, which tracks the implicitly connected individual interface elements. At the
same time, we take advantage of the fact that the interface can also be represented by a Eulerian
function field. Reconstruction of the interface at a certain level of this contour field enables us
to naturally, automatically, and robustly model the merging and pinch off of interfaces as in the
level set method. It also retains the subgrid accuracy of interfacial motion of front tracking, while
eliminating the burden of bookkeeping of the logistic information of neighboring elements as is
necessary in the classic front-tracking approach and which incurs a large memory and calculation
cost.

Recently, the surface tension force has been formulated in a hybrid Eulerian/Lagrangian form
[15], which gives a more accurate representation of curvature. In addition, the LCRM was further
improved by the introduction of a high-order reconstruction procedure [16]. By introducing a
higher-order interpolation kernel for the interface reconstruction, we were able to increase the
accuracy and smoothness of the interface considerably, thus reducing the parasitic currents to a
minimal level.

Although the hybrid curvature formulation and high-order reconstruction can maintain the
parasitic currents at very small values during the simulation, maintaining an acceptable level is
always more difficult in three dimensions than in two dimensions as the interfacial elements are
generally more irregular in three dimensions. As we pointed out in Shin [17], the curvature field
calculated using the hybrid formulation exhibits sharp disturbances away from the interface due
to the nature of the numerical delta function distribution. Using curvature values not at the grid
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cell at hand but at the interface element of interest is preferred in order to further reduce spurious
currents.

To differentiate the material field of each phase, we used an indicator function field found by
solving a Poisson equation whose right side contains geometric information from the interfacial
elements. In most of our previous work we used the FISHPAK [18] routine to compute the indicator
function field. Solving a Poisson equation has some drawbacks in defining a continuous boundary
condition in cases where the interface is in the vicinity of one of the domain boundaries.

In this paper, we carry the hybridization of the LCRM with the level set technique to a further
level in that the explicit calculation of a distance function is introduced and plays a crucial role in
the interface reconstruction procedure as well as in the calculation of the surface tension force. An
accurate method of computing the distance function directly from the tracked interface is presented,
whereby a vector distance function is found, i.e. the minimum distance to the interface as well as
the corresponding minimum distance point location on the interface itself. This information then
allows us to calculate a compact curvature field based on the curvature at this minimum distance
point. The curvature field calculated in this way is compact in the sense that its value is restricted
to the value of interface curvature calculated at the corresponding minimum distance point on the
interface.

The remainder of this paper is organized as follows. We describe the mathematical formulation
in Section 2. Section 3 then describes the direct computation of the distance function from the
interface, a brief description of the high-order LCRM, and a description of the compact curvature
field calculation. We then present test cases to demonstrate the accuracy of this new hybrid interface
method compared with other existing methods.

2. NUMERICAL FORMULATION

2.1. Governing equations

The governing equations for isothermal, incompressible multifluid motion can be expressed in a
single field formulation as:

∇ ·u=0 (1)

�

(
�u
�t

+u·∇u
)

=−∇P+�g+∇ ·�(∇u+∇uT)+F (2)

here, u is the velocity, P the pressure, g the gravitational acceleration, and F is the local surface
tension force at the interface, which can be described by the hybrid formulation [15] as:

F=��H∇ I (3)

where � is the surface tension coefficient (assumed constant here), I is the indicator function, a
smoothed characteristic function for the interface, and �H is twice the mean interface curvature
field calculated on the Eulerian grid.

The expression for the curvature, �H , is given as:

�H = FL ·G
�G ·G (4)
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where

FL=
∫

�(t)
�� f n f � f (x−x f )ds (5)

here, n f is the unit normal to the interface, x f =x(s, t) is a parameterization of the interface �(t),
and � f (x−x f ) is a 3D Dirac distribution that is non-zero only when x=x f . ds is the length (2D)
or area (3D) of the element, � f is again twice the mean interface curvature but computed in a
Lagrangian fashion. The detailed procedure for calculating the force in Equation (5) can be found
in [8, 14, 15]. G and I will be described in the next section.

Material property fields can be described using the indicator function, I (x, t). For example, the
density is calculated as

�(x, t)=�1+(�2−�1)I (x, t) (6)

where the subscripts 1 and 2 refer to the respective fluids. A similar equation is used to define the
viscosity, �.

The interface is advected in a Lagrangian fashion by integrating

dx f

dt
=V (7)

where V is the interface velocity vector interpolated at x f .
The method used to solve the fluid velocity and pressure is the projection method of Chorin

[19]. We use a first-order, forward Euler integration in time. For the spatial discretization, we
use the well-known staggered mesh (MAC method) of Harlow and Welch [20]. The pressure is
located at the cell centers, whereas the x, y, and z components of velocity are located at the
respective faces. All spatial derivatives except the convective term are approximated by standard
second-order centered differences. The convective term is discretized using a second-order ENO
procedure [21, 22]. On the staggered grid, quantities needed at cell centers are linearly interpolated
from cell faces and vice versa. The detailed solution procedure and discretization of the governing
equations can be found in [14, 15, 23].

2.2. Construction of the distance function from an existing front

The indicator function, I , has essentially the same characteristics as the Heaviside function and
can be found by solving the following Poisson’s equation with a standard FFT package such as
FISHPAK [18] on a uniform Cartesian grid:

∇2 I =∇ ·G (8)

where the distribution, G, is the geometric information computed directly on the interface and then
distributed onto a Eulerian grid:

G=
∫

�(t)
n f � f (x−x f )ds (9)

To compute the indicator function field by solving Equation (8), we need to prescribe boundary
conditions for all faces. In the case of evolution of the interface without contact with the boundary,
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it is straightforward to describe the boundary values for I . Since the interface is not in direct
contact with the boundary, explicit Dirichlet boundary conditions, i.e. either one or zero for the
indicator function value, can be assigned for Equation (8). However, if the interface is in contact
with the boundary, it becomes more complex to implement the correct boundary conditions.

An indicator function field, which has the characteristics of a Heaviside side function, can also
be found using the distance function as in the level set method. Here, we will describe a new
concept for computing a vector distance function from the existing interface (Figure 1). For a
given interfacial element, we can identify a sufficiently large local neighborhood of grid nodes and
calculate the minimum distance to that element and where on that element the minimum distance
point lies. This minimum distance vector can originate either from a point inside the line segment
of the element or from the edge of the element. After sweeping through all of the elements, we
can construct the final distance function value at each grid node as well as the minimal distance
point on the interface element. In this way, the distance function field can be calculated for cells
neighboring the interface, usually six cells wide in each direction, and, to save resources, we can
denote the distance function away from this strip as an arbitrary sufficiently large number.

We also need the sign function field to provide the correct signed distance function for the
indicator function calculation. Because the interface element has a specific orientation given by
its normal n, determining the sign function is straightforward when the minimal distance point is
located at a point on the line segment of the element (point A in Figure 1). In case the minimal
distance point is located at the endpoint of the element (point B in Figure 1 or point Q in Figure 2),
more than one element normal might affect the sign function value (point Q in Figure 2). By
summing the dot product of element normals (n1 and n2 in Figure 2) for the grid point of interest
and the direction vector from the minimum distance point on the interface to the cell center
location (PQ in Figure 2), we can calculate the correct sign function value at Q in Figure 2 as

Figure 1. Computing distance function from the existing 1D linear interfacial elements for
two-dimensional simulation. The minimum distance point can locate to either inside the line

segment or to the edge of the element.
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Figure 2. Sign function computation in the case where the minimum distance
lies at the edge of the element.

follows:

S0(Q)=sign

(
m∑
i=1

PQ ·ni
)

(i=1, . . . ,m) (10)

here, m is the total number of elements and the sign function returns +1 or −1 depending on
the input. After sweeping the entire interface and assigning a value of either +1 or −1 to the
nearby grid cells, we can generate the sign function field, S0, for a few cells near the interface as
in Figure 3.

We need to expand this initial sign function, S0, to the entire domain. We follow an approach
similar to that taken by Torres and Brackbill [24] who iteratively solve:

∇2S(x)=0 (11)

starting from the S0 initial sign function field near the interface as described in Figure 3. It is not
necessary to converge to the complete solution of Equation (11) as the desired quantity is simply
the sign field and a few iterations, depending on the grid resolution but usually less than 10 for
2D problems, suffice to calculate it for the entire domain. Figure 4(b) shows a distance function
field calculated from a starfish-shaped interface given as:

x = cos(�)+0.4 sin(�)cos(�)

y = sin(�)+0.4 sin(�)sin(�)
(12)

where � has values between 0 and 2�. Figure 4(a) shows the initial interface in a 4×4 box
with a grid resolution of 50×50. The indicator function computed using the distance function in
Figure 4(b) is shown in Figure 4(c). Even with this relatively low resolution, the distance and
indicator functions have been calculated correctly.
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Figure 3. Sign function distribution near the interface before expansion.

The concept for generating the indicator function field for 3D cases will be exactly the same
as in 2D cases except that the minimal distance point may lie inside the 2D triangular element or
on the edge of the element or at a vertex. Here, we describe the details of the procedure in the
3D case.

In the plane of the triangular element, the location of the minimal distance point from that
element to nearby grid cells can lie either inside the triangle or outside (Figure 5). Details of the
procedure are as follows:

1. Given a grid cell center location C, draw a normal line to the plane formed by the vertices
of the triangle 1© 2© 3©. The intersection of this normal and the plane is at point B, which can
lie either inside the triangular element (Figure 5(a)) or outside the element (Figure 5 (b)).

2. The ordering of the vertices upon creation of the triangular element provides the element
with an orientation given by its normal, n, and likewise its edge normals, n12,n23, and n31,
can easily be defined. Points A1, A2, A3 can be found by drawing normal vectors from base
point B to each line formed by the legs 1© 2©, 2© 3©, and 3© 1©. In the case n12 ·A1B>0,
n23 ·A2B>0, and n31 ·A3B>0, the base point B is located inside the element of interest as
shown in Figure 5(a). Then the minimal distance vector to the interface will be BC.

3. If the base point B is outside of the element of interest, at least one of the values n12 ·A1B,
n23 ·A2B, n31 ·A3B will be of negative sign. In the case where two of the values are negative
then the minimal distance point will be one of the vertices 1© or 2© or 3©. For example,
in Figure 5(b) we can determine that base point B is outside the element from the fact that
n12 ·A1B>0, n23 ·A2B>0, and n31 ·A3B<0. Thus, the minimal distance point will lie on the
line formed by 1© 3©. If A3 lies between 1© and 3©, then the minimum distance point will
be A3. If A3 is located outside of the segment 1© 3© then either vertex 1© or 3© will be the
minimum distance point.

As in the 2D case, we perform a sweep of the entire interface with this procedure. Thus, the
distance function field is determined as the minimum distance from grid cells to triangular interface
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Figure 4. Calculating the distance function of a starfish-shaped interface: (a) original interface; (b) distance
function computed directly from interface; and (c) Heaviside function using distance function (b).
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Figure 5. Computing distance function from the existing 2D triangular interfacial elements for
three-dimensional simulation: (a) intersection of normal where the interface lies inside the element

and (b) intersection of normal where the interface lies outside the element.

elements (whether to a point inside the triangle or on its periphery). Determination of the sign
function for the 3D case is exactly the same as in the 2D procedure.

2.3. High-order reconstruction method

During reconstruction using the original LCRM [14], the interface elements were created and
located using a linear interpolation of the given indicator function field. We found that reconstruction
using this linear interpolation introduces a small disturbance, which eventually dies out very quickly
after a few time steps. This indicates that the reconstructed interface is continuous but not smooth
with linear interpolation. The effect is usually negligible as reconstruction is not performed at every
time step. However, this slight perturbation may cause instability of the solution for simulations
requiring frequent reconstruction of the interface, especially with low resolution. Moreover, slight
discrepancies in the interface points can induce undesirable results where the exact location of
the interface is extremely important. Thus, high-order reconstruction was introduced in [16]. The
method is simpler and has an accuracy comparable to other methods using complicated procedures
for smoothing the interface.

Here, we briefly introduce the basic concept contained in the high-order reconstruction procedure.
The distance function 	(i, j,k) generated using the process described in Section 2.2 can be modified
by adding a trial function, 
(i, j,k) as follows:

	H (x)=∑
g

[	(i, j,k)+
(i, j,k)]S(x−xg) (13)
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here, x is the evaluation point, xg is the grid cell center, and the summation is performed across a
small multiple of the mesh, usually two grid cells wide, in each direction. The tensor product of
1D B-splines [25], M, given as:

S(x−xg)=M(x−xg,�x)M(y− yg,�y)M(z−zg,�z) (14)

has been used for S(x−xg) to interpolate the local distance function values smoothly. We used
cubic B-splines M3(x,h) suggested by Torres and Brackbill [24]:

M3(x,h)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

3
−

( |x |
h

)2

+ 1

2

( |x |
h

)3

, 0� |x |
h

�1

1

6

(
2− |x |

h

)3

, 1� |x |
h

�2

0 otherwise

(15)

here, h represents the grid cell size in each direction. The trial function has been added since
the original distance function itself cannot exactly describe the zero contour level of the original
interface location. There are several ways of approximating the trial function, 
(i, j,k) and we
used the following function:


(i, j,k)=∑
Np

�IpS(xg−xp) (16)

here, xp is the location of the original interface points before reconstruction, �Ip is the increment
needed at the original interface points, and the integral has been performed over all of the elements.
The basic idea is similar to the point set method of Torres and Brackbill [24] except that their
indicator function has been computed directly from the interface element. The detailed procedure
for high-order reconstruction can be found in [16].
2.4. Compact curvature field

As we pointed out in Shin [17], the curvature field from the hybrid formulation shows that higher
errors in curvature exist away from the interface (i.e. toward the edge of the interfacial zone) due
to the finite support of the numerical Dirac delta distribution in Equation (9). Both the FL and
G distributions are only non-zero in the zone around the interface. They will have values near
zero at the edges of this zone, thus any errors become more sensitive to the data away from the
interface. In Shin [17] a procedure for calculating curvature locally at the interfacial points and
then redistributing this result back to the Eulerian grid was recommended. However, here we make
a modification, which we call the compact curvature calculation: when distributing the curvature
from the interface element to the Eulerian grid, it is physically more appealing to take a value at the
minimum vector distance from the interfacial element of interest. As we have already calculated
a minimal distance point to the interface in Section 2.2, the curvature field can be constructed in
cells near the interface by taking the curvature value of the minimal distance point on the interface
as follows:

�C (i, j,k)=�H (xbt , ybt , zbt ) (17)

here, �C stands for the compact curvature formulation and each i , j , and k represents the grid cell
center location (Figure 6). �H is the field distribution obtained using Equation (4) and (xbt , ybt , zbt )
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Figure 6. Minimum distance points on the interface from cell center location in
three-dimensional simulation. The curvature value at location (i, j,k) can be interpolated

at point (xbt, ybt, zbt) for compact curvature support.

is the minimum distance point on the interface as in Figure 6. The value of �H is interpolated to
(xbt , ybt , zbt ) using the high-order kernel of Equation (14).

3. RESULTS AND DISCUSSION

3.1. Geometry tracking test

We first demonstrate the accuracy of the high-order reconstruction method on the rigid body
rotation of Zalesak’s disk [26] in a constant vorticity field. This classic problem has been used
extensively to test the advection ability of interface tracking methods. A 0.15 radius slotted disk
centered at (0.5,0.75) will rotate in a unit domain following a velocity field given as:

v(x)= �

314

[
50− y

x−50

]
(18)

The disk with a slot width of 0.05 and a slot length of 0.175 completes one revolution in 628 time
units. Figure 7 shows a comparison between the high-order reconstruction method with a 100×100
grid resolution and a highly accurate front-tracking solution. About 60 interface reconstructions
have been performed with high-order reconstruction. After one revolution, high-order reconstruction
shows fairly good results considering that only five grid cells capture the slot width. We also plot
a detailed image near the sharp corners inside the slot. With this given resolution, the high-order
reconstruction method shows a smoothing of the corners as the reconstruction depends on the
resolution of the underlying Eulerian grid.

We also tested 3D rigid body rotation using a 3D version of the Zalesak’s disk problem [11].
The sphere placed at (0.5,0.75,0.5) has a radius of 0.15. The slot has a width of 0.05 and length
of 0.175 in a unit domain. It rotates one cycle in the z=0.5 plane around the point (0.5,0.5,0.5)
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Figure 7. Rigid body rotation of Zalesak’s two-dimensional disk. A 0.15 radius slotted
disk centered at (0.5,0.75) will rotate in a unit domain. Figure represents the interface

after one revolution at 628 time units.

over 628 time units. The velocity field is defined as follows:

v(x)= �

314

⎡
⎢⎣
50− y

x−50

0

⎤
⎥⎦ (19)

A 100×100×100 grid resolution has been used and again only about five grid cells capture the slot
width and seven the slot length. The same number of reconstructions have been performed as in the
2D simulations. We can see that the high-order reconstruction method shows very accurate results,
comparable to those from the hybrid particle level set method [11], with negligible numerical
diffusion of the interface (Figure 8). As expected, at t=628, the interface is nearly identical to
the initial surface at t=0. We also checked mass conservation after one revolution for both tests.
Mass loss was 10−3 and 10−1 % for the 2D and 3D cases, respectively.

A much more difficult test is the interface stretching and tearing in the ‘vortex in a box’ problem
introduced by Bell et al. [27]. The test demonstrates the method’s ability to accurately resolve
thin filaments on the scale of a grid cell. A unit computational domain is used with a circle of
radius 0.15 placed at (0.5,0.75) using a 32×32 and 128×128 grid cell domain. Figure 9 shows
the interface at t=5 with velocity field defined as:

v(x)=2

[−sin2(�x)sin(�y)cos(�y)

sin2(�y)sin(�x)cos(�x)

]
(20)

The resulting velocity field stretches out the circle into a very long, thin spiral filament, which
progressively wraps itself toward the center of the box. As can be seen in Figure 9, the fine structure
of the interface has been well captured with sufficiently high resolution. In Figure 9(b), we plot
both the high-order LCRM and a high-resolution front-tracked solution with a grid resolution
of 128×128 and it is difficult to differentiate one from the other. In this case, the interface
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Figure 8. Three-dimensional version of Zalesak’s disk. The sphere placed at (0.5,0.75,0.5) has a radius
of 0.15. The slot has a width of 0.05 and length of 0.175 in a unit domain. It rotates one cycle in the

z=0.5 plane around the point (0.5,0.5,0.5) over 628 time units.

elements get elongated by the flow and the reconstruction procedure becomes essential for an
accurate simulation. Reconstruction has been performed at every 100th time step and a total of 50
reconstructions have been used for both the simulations.

For the purpose of error analysis, the velocity field is time reversed by multiplying by cos(�t/T )

where T is the time at which the flow returns to its initial state. The reversal period used in the error
analysis of the vortex problem is T =8 producing a maximal stretching similar to the interface
in Figure 9. We checked the percentage area loss after one period of motion of the interface. As
can be seen from Figure 10, the ability of the high-order LCRM to model interfaces undergoing
substantial stretching is about two orders of magnitude better when compared with the hybrid
particle level set method and shows second-order convergence with increasing resolution. We
plotted the interface shape at t=T/4,T/2,3T/4, and T in Figure 11 with a 64×64 grid resolution.
We also plotted the high-resolution front-tracking result at corresponding times for comparison.
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Figure 9. Interface plot at t=5 for the test of stretching and tearing of the interface in the ‘vortex in
a box’ problem. A unit computational domain is used with a circle of radius 0.15 placed at (0.5,0.75)
using: (a) a 32×32 grid cell domain and (b) a 128×128 grid cell domain. High-resolution front-tracking

solutions have been plotted at the same time for (b) and the two are indistinguishable.

Even with this low resolution, the high-order reconstruction method can capture the thin filament
well except near the very tail of the interface at t=T/2. The filament is only about one grid cell
wide near the tail of the interface and yet the high-order LCRM nearly produces as accurate a
result as the high-resolution front-tracked solution.

An even more difficult test case is the entrainment of a circular body in a deformation field
defined by 16 vortices as introduced by Smolarkiewicz [28]. A circle centered at (0.5,0.5) of
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Figure 10. Percentage area loss after one revolution of the interface for the ‘vortex in a box’
problem in Figure 9 with time reversing flow field. High-order LCRM is about two orders
of magnitude better when compared with the hybrid particle level set method and shows

second-order convergence with increasing resolution.

radius 0.15 is placed in a unit domain and 200 total interface reconstructions have been performed
throughout the simulation. The periodic velocity field is given as

v(x)=
[ −sin[4�(x+0.5)]sin[4�(y+0.5)]

−cos[4�(x+0.5)]cos[4�(y+0.5)]

]
(21)

We multiply the above equation by cos(�t/T ) where again T is the period for the interface to reach
maximum deformation and return to its initial position. A period of T =2 is used with three different
grid resolutions for the error analysis. Figure 12 shows percentage area loss vs grid resolution. The
error is somewhat high at low resolution using high-order reconstruction but converges quickly
showing second-order accuracy. In Figure 13, we generate the interface at t=T/2 where maximum
stretching of the interface occurs and t=T where the interface should be identical to its initial
position with three different resolutions of 256×256, 128×128, and 64×64, respectively. The
very thin filament has not been correctly captured with lower resolution because the interface is
reconstructed from the Eulerian distance function field. Thus, the high-order reconstruction method
still depends on the resolution of the underlying grid. However, with sufficiently high resolution,
the high-order reconstruction method shows very accurate results comparable to both the front
tracking and the hybrid particle level set method.

To check the accuracy of the high-order reconstruction method with large interface deformation
in three dimensions [11], we stretch the interface using the velocity field given as

v(x)=

⎡
⎢⎢⎣
2 sin2(�x)sin(2�y)cos(2�z)

−sin(2�x)sin2(�y)sin(2�z)

−sin(2�x)sin(2�y)sin2(�z)

⎤
⎥⎥⎦ (22)
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Figure 11. Interface shape at t=T/4,T/2,3T/4, and T for the ‘vortex in a box’ problem in Figure 9
with a 64×64 grid resolution. High-resolution front-tracking solutions have been plotted at the same time

and the two are indistinguishable.

which induces a deformation of the interface in the x–y plane as well as in the x–z plane. The
flow field is modulated in time with a period of T =3. We simulate a unit computational domain
containing a radius 0.15 sphere at (0.35,0.35,0.35) with a 100×100×100 grid resolution. The
sphere becomes highly deformed by the vortical flow field. Figure 14 shows the interface shape
at t=0 (top), 0.5,1,1.5,2,2.5, and 3. Note that the final frame at t=T =3 should ideally be
identical to the initial sphere at t=0. In addition, the frames at t=1 and t=2 should be identical
and the frames at t=2.5 and t=0.5 should be identical. Maximum stretching occurs at t=1.5
where the volume loss is 0.37%. After completing a full cycle, at t=3, the high-order LCRM
has lost only 0.22% of initial volume. Compared with the hybrid particle level set method, which
lost 2.6% after one period, the high-order reconstruction method shows remarkable accuracy even
in three dimensions. A total of 247 894 elements are used to capture the interface at t=1.5 and
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Figure 12. Percentage area loss vs grid resolution for the entrainment of a circular body in a deformation
field defined by 16 vortices. A circle centered at (0.5,0.5) of radius 0.15 is placed in a unit domain.

58 064 elements are used for the initial and final interface in Figure 14. A total of 300 interface
reconstructions have been performed during the simulation.

3.2. Parasitic currents

Spurious or parasitic currents become an important problem in two-phase modeling as they impose
limitations on the application of interface methods to two-phase flows. Parasitic currents plague
all interface methods and numerous attempts at remediation have been implemented in order to
reduce or eliminate these currents. By using the hybrid formulation of the surface tension force
[15] combined with the high-order reconstruction method [16], we can suppress spurious currents
to a minimal level compared with the classic front-tracking formulation. We will check the effect
of the compact curvature formulation on parasitic currents and will focus only on the 3D problem
as the interface after reconstruction is usually more irregular in three dimensions than in two
dimensions and thus parasitic currents will have a greater effect on the solution.

Renardy and Renardy [29] proposed an algorithm for improving the surface tension computation
and thus reducing the parasitic currents in VOF methods. They calculated the interface curvature
from an optimal fit for a quadratic approximation to the color function over groups of cells near
the interface. Using this, parasitic currents are reduced by two orders of magnitude compared
with the conventional VOF-CSF [1] or VOF-CSS [2, 3] methods. We repeated the simulation in
Table I of Renardy and Renardy [29]. We placed a spherical drop centered at (0.5,0.5,0.5), with a
radius of 0.125 and surface tension of 0.357 in a 1×1×1 box with 10×10×10, 20×20×20, and
40×40×40 resolutions. The boundary condition is no slip at the top and bottom walls, and periodic
in the x and y directions. Both fluids have an equal density of 4 and a viscosity of 1. The initial
velocity field is zero. The exact solution is zero velocity for all time. Figure 15 shows the L∞, L1,
and L2 norms of the velocity field for the spurious currents. As we discussed in [15], if the initial
interface is a circle or sphere with uniformly distributed elements along the interface where exact
curvature has been employed or an exact distance function has been prescribed, we can maintain
the parasitic currents at machine zero level precision. This being given, all of the subsequent tests
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Figure 13. Interface plot at t=T/2 where maximum stretching of the interface occurs and at t=T
where the interface should be identical to its initial position with three different resolutions of:

(a) 256×256; (b) 128×128; and (c) 64×64.
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Figure 14. Large interface deformation in three dimensions. A sphere of radius 0.15 is placed within a
unit computational domain at (0.35,0.35,0.35). A 100×100×100 grid resolution was used.

are for interfaces with non-uniformly distributed elements at the start of the simulation, which
can be generated with a single reconstruction of the interface from the given distance function
for a circle or sphere. As can be seen from Figure 15, the compact curvature formulation shows
remarkable improvement over the hybrid surface tension formulation. Each norm of the compact
curvature formulation is slightly better compared with the results of Renardy and Renardy [29]
and the convergence rate is the same as theirs.

We also tested a more severe case with a high density and viscosity ratio. A drop of radius 0.25
is placed in a 1×1×1 box resolved by a 20×20×20 mesh. The material properties have been
chosen similar to those of a water droplet in air (�1/�2=1000,�1/�2=100). The Laplace number
(La=��D/�2) based on the water properties is 5×105 and air properties is 5×106. As we can see
in Figure 16, the maximum value of the spurious currents with the compact curvature calculation is
almost one order of magnitude lower than that of the hybrid surface tension formulation alone and
the high-order reconstruction method generates no spikes in spurious currents after reconstruction.
Interface reconstruction has been performed at every 10th time step. We conclude that parasitic
currents have been shown to be small in the standard front-tracking method [6–8] but not negligible.
By using the compact curvature formulation with the high-order reconstruction method, we reduce
the parasitic currents to a minimal level with no additional disturbance during reconstruction, which
is especially beneficial in 3D simulations where grid resolution is generally lower and where the
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Figure 15. Velocity norms of spurious current vs grid resolution compared with the results from
Renardy and Renardy [29]. Spherical drop centered at (0.5,0.5,0.5), with a radius of 0.125 and a
surface tension of 0.357 in a 1×1×1 box with 103, 203, and 403 resolution. The boundary condition
is no slip at the top and bottom walls, and periodic in the x and y directions. Both fluids have an

equal density of 4 and a viscosity of 1.

Figure 16. Maximum spurious velocity with a high density and viscosity ratio. A drop of radius
0.25 is placed in a 1×1×1 box resolved by a 20×20×20 mesh. The material properties have been
chosen similar to those of a water droplet in air (�1/�2=1000,�1/�2=100). The Laplace number

(La=��D/�2) based on the water properties is 5×105 and air properties is 5×106.
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triangular interface elements generally can have a more irregular shape compared with the line
elements for 2D cases.

3.3. 3D bubble rise

We calculated the rise of a single bubble to validate the accuracy of the current method. We used a
domain of size 4R×4R×12R with a density ratio of 100, viscosity ratio of 10, a Reynolds number
of 29.23, and a Weber number of 1.95 as used by Esmaeeli and Tryggvason [30]. They obtained
a terminal bubble rise velocity of 20.5 using the front-tracking method. In our current simulation,
a 32×32×96 grid has been used with a time step of 10−4. As can be seen from Figure 17(a),
the rise velocity of the bubble reaches a steady-state value of 20.5 and is everywhere within 1%
of the results calculated by Esmaeeli and Tryggvason [30]. The rise velocity calculated with both

Figure 17. Rise of a single bubble. Domain of size 4R×4R×12R with a density ratio of 100, viscosity
ratio of 10, a Reynolds number of 29.23, and a Weber number of 1.95. A 32×32×96 grid has been used

with a time step of 10−4: (a) rise velocity and (b) mass conservation during the simulation.
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the compact curvature formulation and the hybrid formulation has been plotted in Figure 17(a)
and shows identical results. Total mass change during the simulation was plotted in Figure 17(b)
and is almost negligible for the compact curvature formulation. The mass change is somewhat
higher with the hybrid surface tension formulation alone. Using the same time step for both the
compact curvature and hybrid surface tension formulation, we see that for the hybrid formulation
the simulation eventually breaks down near t=3.5.

The curvature field for a cross section of the interface at early time is shown in Figure 18 for
both the compact curvature formulation and the hybrid surface tension formulation. The compact
curvature formulation shows a nearly flat curvature field but the hybrid surface tension formulation
has spikes at the edge of the interfacial zone and the curvature field has slight peaks and bumps
throughout the interfacial region. Owing to this perturbation of the curvature field with the hybrid
formulation, the simulation requires a relatively smaller time step compared with the compact

Figure 18. Curvature field for a cross section of the interface at early time in the bubble rise simulation:
(a) compact curvature formulation and (b) hybrid surface tension formulation alone.
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Figure 19. Velocity and pressure distribution through a vertical center plane along with the
interface for the bubble rise simulation.

curvature formulation. The velocity and pressure distribution through a vertical center plane along
with the interface is plotted in Figure 19.

4. CONCLUSION

We have proposed a hybrid interface method for multiphase flows, which combines some essential
features of front tracking and level set techniques. While retaining an explicitly tracked interface
using interfacial elements, the calculation of a vector distance function plays a crucial role in
the periodic reconstruction of the interface elements in the LCRM to maintain excellent mass
conservation and interface fidelity. In addition, the vector distance function is now incorporated
as an essential ingredient in the calculation of the surface tension force thereby reducing parasitic
currents to a negligible level.

Despite the fact that the linear reconstruction used with the original LCRM shows good overall
performance, it experiences a relatively large error in the exact interface location and local mass
conservation after reconstruction. This usually leads to instability of the solution where repetitive
reconstruction is necessary. By using high-order reconstruction [16], we could reduce the mass
redistribution between two distinct interfaces or widely differing curvature regions to a negligible
level and relocate the interface much more accurately and smoothly. However, the accuracy of
the reconstruction procedure is essentially dictated by the underlying Eulerian grid resolution
for the distance function and thus reconstruction frequency may become an important issue with
low-resolution simulations. With sufficiently high resolution, we found that the frequency of
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reconstruction has a very minor impact on the final solution. Several tests including surface
convolution, interface evolution in a vortex field, and large surface deformation in three dimensions
have been performed and the high-order reconstruction procedure showed comparable or even
better results compared with other existing methods.

A new procedure for calculating the indicator function field has been presented, which uses a
vector distance function computed directly from the tracked interface. The procedure is simple,
easily applied for interfaces in both 2D and 3D simulations and can handle complicated boundary
conditions in a straightforward manner. This is especially important where the interface contacts
the wall.

The improvement using the compact curvature formulation along with high-order reconstruction
is evident in tests of the magnitude of spurious currents. Focus has been placed on the 3D problem
and there the parasitic currents are about one order of magnitude smaller than with the hybrid
surface tension formulation [15] alone. As there is virtually no perturbation caused by the high-
order reconstruction with the compact curvature scheme, we can achieve an accurate surface shape
even with exceptionally low grid resolution. This can be very important in 3D simulations where
the use of sufficient grid resolution is restricted due to the available computational resources.
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